Three Dimensional Volumetric Analysis of the Maxillary Sinus Using Computed Tomography from Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria

*1Abdulhameed A., 1Zagga A. D., 1Ma’aji S. M., 1Bello A., 1Bello S. S., 1Usman J. D., 1Awwal M. M. and 1Tadros A. A.
1Department of Anatomy, College of Health Sciences, Usman Danfodiyo University, Sokoto, Nigeria
2Department of Radiology, Usman Danfodiyo University Teaching Hospital, Sokoto
*E-mail: anastomosis74@gmail.com, aliuabdulhameed@yahoo.com.

ABSTRACT
The maxillary sinus is a pneumatic cavity within the maxilla. The extent of pneumatisation varies among individuals; its volume is influenced by age, and alveolar bone height, prompt evaluation of the maxillary sinus volume is useful in sinus surgery. The aim of this study is to determine volume of the maxillary sinus using computed tomography, to correlate this with side, age and sex and to provide baseline data for values in our environment. A retrospective evaluation of 130 subjects (79 males and 51 females), between 20 - 80 years, with normal maxillary sinus CT anatomy, from head CT scans was carried out at the Radiology Department of the Usmanu Danfodiyo University Teaching Hospital, Sokoto. The anteroposterior transverse and craniocaudal diameters were measured from axial, coronal and sagittal reformatted images. All measurements were taken between the widest points on the sinuses and the volume of each sinus was determined by the product of these three diameters and the slice thickness. On the right, mean sinus volume for males was 14.98cm³, and 13.26cm³ for females. On the left, average sinus volume for males was 15.08cm³, and 16.06cm³ for females. There was a considerable decrease in the mean volume on both sinuses from 14.15cm³ to 13.51cm³ and from 14.33cm³ to 9.61cm³ respectively in relation to increase in age. The overall mean of the right and left maxillary sinus volume were 14.30cm³ and 14.54cm³ respectively. It is therefore concluded that Computerized Tomography measurements may be useful in volume assessment of the maxillary sinus as a preoperative work-up procedure for sinus surgery.

Keywords: Maxillary Sinus, Volume Analysis, Computed Tomography, Sokoto, Nigeria.

INTRODUCTION
The maxillary sinus is the largest of the paranasal sinuses and represents a complex anatomical structure with a significant inter-individual variation (Helmy, Tadros and Michael, 1969; Sinnatamby, 2005; Koji, Endo and Shimooka, 2009; Uthman, Al-Rawi, Al-Naaimi and Al-Timimi, 2011). The extent of pneumatisation of the maxillary sinus varies from person to person; its volume is influenced by age, residual dental
projections, and alveolar bone height (Woo and Le, 2004; Ariji Y., Ariji E., Yoshiura and Kanda, 1996; Deeb et al., 2011). The normal volume of the maxillary sinus is useful in treatment planning, evaluation of outcome and establishment of base line data (Mehmet et al., 2007). A detailed knowledge of the anatomy of the sinuses is crucial in performing surgical procedures such as functional endoscopic sinus surgery (Mehmet et al., 2007; Maryam et al., 2010). Genetic diseases, environmental conditions and past infections may affect the developmental process and the resultant volume of the maxillary sinus (Karakas and Kavaklý, 2005). Computed Tomography is valuable, simple, fast and painless, now a widely available imaging modality for three-dimensional evaluation of anatomical structures producing thin and multislice CT technology, voxel sizes with submillimeter resolutions, multiplaner and volumetric reconstruction with improved patients comfort, however, its major drawback remains the inherent costs and the radiation concerns (Reichs, 1993; Damman et al., 2000; Maryam et al., 2010).

High resolution CT of the maxillary sinus has become indispensible in the complete evaluation of the maxillary sinus and its lesions (Damman, Bode, Heuschmid et al., 2000), an essential aid in navigation during functional endoscopic sinus surgery (FESS) (Sahlstrand, Magnus, Anita and Kasim, 2011), and a mandatory procedure in the preoperative work-up for sinus surgeries to establish optimal volume of implants (Gray et al., 2000), sinus floor elevation in placement of implants (Kuhl et al., 2010) and to determine the percentage of pneumatization in the sinus cavity (Park et al., 2011).

The volume of the paranasal sinuses tends to decrease with increasing age and the maxillary sinus volume has been found to decrease after the age of 20 years (Jovanic, Jelicic and Kargovska-Klysarova, 1984). According to Deeb et al., (2011), a reduction in sinus volume in the presence of chronic rhinosinusitis is associated with the increase in cortical bone and mucosal thickness. Other studies have suggested that the maxillary sinus volume increases with age (Ariji et al., 1994; from Kyushu University, Fukuoka, Japan, Sacide and Ahmet, 2005, from Firat University of Medicine, Elazig, Turkey) and loss of teeth (Uemura, 1974, from Japan). The mean volume of the maxillary sinus was 14.75cm³, 20.05cm³, and 14.71cm³ respectively according to Calhoun et al., (1988), from the University of Texas, United State, Amedee, (1993), from Johannes Gutenberg University Mainz, Germany, and Ariji et al., (1994), from Kyushu University, Fukuoka, Japan.

According to Uchida, Goto, Katsuki and Akiyoshi (1998), from Saga Medical School, Nabeshima, Japan, and Kim et al., (2002), from Yonsei University, Seoul, Korea, the average volume of the maxillary sinus is 11.3cm³, and 15.1cm³ respectively. Mean sinus volume in males was 24.04cm³ and 15.85cm³ in females according to Jun et al., (2005), from Catholic University of Korea, Seoul, while Koppe et al., 2006, report from Okayama University School of Dentistry, Japan, that, the right sinus volume was larger than the left, and that asymmetry in maxillary
sinus volume was not related to gender or size of skull. Mehmet et al., (2007), reported from the Department of Anatomy, Medical School, Ondokuz Mayis University, Samsun, Turkey, that sinus volume was 35.9cm³, while it ranged between 11.1cm³ and 23.0cm³ among Germans at the University of Bonn, Germany (Pirner et al., 2009). Sahlstrand, Magnus, Anita and Kasim (2011), from Lund University and Skane University Teaching Hospital, Malmo, Sweden, report a mean sinus volume of 15.7cm³, while Amusa et al., (2011), report from Obafemi Awolowo University Teaching Hospital, Ile Ife, that the average volume on the right was 11.59cm³ and 14.98cm³ on the left. There is paucity of data on the volume of the maxillary sinus among Nigerians and most of these works were done on Caucasian subjects. The aim of this study is therefore meant to compliment these findings and to establish a baseline data for values in our environment.

MATERIALS AND METHOD
One hundred and thirty subjects comprising 79 males and 51 females, between 20 - 80 years, with normal maxillary sinus CT anatomy, from head CT scans carried out at the Radiology Department of the Usman Danfodiyo University Teaching Hospital (UDUTH) Sokoto, over a five year period were recruited for this study. Head CT Scans were obtained from the local data base of the CT machine and back up compact disc from the CT library. Films were viewed on the computer monitor. Good positioning of images was observed to ensure symmetry or asymmetry of the maxillary sinus. Measurements were made with Neusoft Dual Slide Helical CT machine (2005 model, 15cm FOV, 200mA, 120kV, scanning at high resolution bone algorithm at 1 second and slice thickness of 5mm), with software that provides a meter rule, with which linear measurements (craniocaudal, anteroposterior and transverse diameters) in millimeters between the widest points on the sinuses were taken from axial, coronal and sagittal reformatted images. The volume of each sinus was determined by the product of the previous three dimensions and the slice thickness as described by Sahlstrand, Magnus, Anita and Kasim (2011). These measurements were performed on three-dimensional reconstructed images using V-works 3.0 program. Data was manually sorted out, tabulated, entered into computer using Microsoft word and Microsoft Excel and analyzed using Minitab 16.0 statistical package. The mean (±SD) volumes were determined and comparisons of mean values were done using Students’ t-test.

RESULTS AND DISCUSSION
On the right maxillary sinus, the widest range of volume was recorded between 70 and 79 years, while on the left, the lowest and highest volumes were recorded over 50 – 59 years and 70 – 79 years respectively. However the maximum right sinus mean volume was found in subjects between 30 to 39 years, while it was 15.67cm³ between 70 – 79 years on the left. On the right maxillary sinus, mean volume for males was 14.98cm³ while in females it was 13.26cm³, indicating that there was no
statistically significant difference in the right maxillary sinus volume between males and females. On the left maxillary sinus, the average volume for males was 15.08 cm³, while for females it was 16.06 cm³. This showed no statistically significant difference between both sexes. The maxillary sinus volume was found to decrease after the age of 20 years. Although there was no consistent decrease in the sinus volumes as the age increased (table 2), volume decrease with increased age of subjects was established on both right and left maxillary sinus from 14.15 cm³ to 13.51 cm³ and from 14.33 cm³ to 9.61 cm³ respectively in relation to the two extremes of the age groups studied (20 – 29 years and 80 – 89 years). The overall mean of the right and left maxillary sinus volume were 14.30 cm³ and 14.54 cm³ respectively.

In this study, maxillary sinus volume decreased with age and was found to decrease after the age of 20 years as reported by Ariji et al., (1994) from Fukuoka, Japan, Ariji et al., (1996) from Nagasaki, Japan, and from Ondokuz Mayis University, Samsun, Turkey, by Mehmet et al., (2007). However, from Firat University of Medicine, Elazig, Turkey, Sacide and Ahmet (2005) have it that the maxillary sinus volume increases with age. Our studies found larger volumes on the left maxillary sinus in both sexes; this is in tendem with the findings of Nowak and Mehls (1977), from East Germany, and also supported by the report of Amusa et al., (2011), (right: 11.59 ± 5.36 cm³ and left: 14.98 ± 10.77 cm³), who worked on Nigerians in the south west region, that the left maxillary sinus volume was larger than the right in both males and females. However, Koppe et al., (2006), from Okayama, Japan, maintained that, the volume of the right maxillary sinus was larger than that of the left side.

This study also reveals that no statistically significant difference existed between the right and left maxillary sinus volume of both sexes (p < 0.001). With slightly lower volumes except in female left sinus, this results compared favourably with the conclusion from Lund, Sweden, by Sahlstrand et al., (2011), who report that no statistically significant difference existed between the left and right maxillary sinus volumes; for males, (right = 18.0 cm³ ± 6.00 cm³, left = 18.0 cm³ ± 7.00 cm³) and females (right = 14.0 cm³ ± 3.00 cm³, left = 15.0 cm³ ± 4.00 cm³). The average right maxillary sinus volume from this study were higher than the values reported by Amusa et al., (2011), (the right was 11.59 cm³ ± 5.36 cm³ and 14.98 cm³ ± 10.77 cm³ on the left). Our study also discovers that Nigerians in the North West had larger maxillary sinus volumes compared to Indians in Mysore according to Vidya et al., (2013) who reported that sinus volume among Indian males was 13.606 cm³ ± 5.247 cm³ on the right, and 13.50 cm³ ± 6.513 cm³ on the left, while in females, it was 9.733 cm³ ± 3.389 cm³ and 10.908 cm³ ± 3.39 cm³ for the right and left sinus respectively. However, the values from this study fell within the range of values established by Ariji et al. (1994); 4.56 cm³ to 35.2 cm³ (mean = 14.71 cm³ ± 6.33 cm³) in patients aged over 20 years among Japanese in Fukuoka, and Pirner et al., (2009); 11.1 cm³ ± 4.5 cm³ to 23.0 cm³ ± 6.7 cm³ from the University of Bonn,
Germany. The results of this study compared favourably with the reports from the University of Texas, United States by Calhoun et al. (1991), Amedee (1993), who reported from Johannes Gutenberg University Mainz, Germany, that the mean volume of the maxillary sinus as 14.75cm^3 and $20.05 \text{cm}^3 \pm 9.2 \text{cm}^3$ respectively, but were lower than the mean maxillary sinus volume in early adults of 24.04cm^3 (males) and 15.86cm^3 (females) among Koreans in Seoul, by Jun et al. (2005).

CONCLUSION

The aim of the study is to determine volume of the maxillary sinus using computed tomography, to correlate this with size, age and sex and to provide baseline data for values in our environment. The results compare favourably with the reports from the University of Texas, United States and Johannes Gutenberg University Mainz, Germany, but were lower than the mean maxillary sinus volume in early adults among Koreans. It therefore concludes that computerized tomography measurements may be useful in volumetric assessment of the maxillary sinus. Sinus volumes decreased with increasing age, and were larger on the left maxillary sinus in both sexes.

<p>| Table 1: Mean and Standard Deviation (±SD) of Measurements of the Maxillary Sinus in Relation to Sex Distribution of Subjects Used in the Study |</p>
<table>
<thead>
<tr>
<th>Maxillary sinus Dimensions</th>
<th>Males</th>
<th>Females</th>
<th>t</th>
<th>df</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (+/- SD)</td>
<td>Mean (+/- SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Maxillary Sinus</td>
<td>CC 32.21mm(±5.56)</td>
<td>30.93mm(±6.09)</td>
<td>1.21</td>
<td>100</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>TR 24.18mm(±5.80)</td>
<td>23.14mm(±4.70)</td>
<td>1.12</td>
<td>121</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>AP 36.94mm(±4.73)</td>
<td>36.29mm(±4.71)</td>
<td>0.76</td>
<td>107</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>VOL 14.98cm³(±6.53)</td>
<td>13.26 cm³(±5.04)</td>
<td>1.68</td>
<td>124</td>
<td>0.09</td>
</tr>
<tr>
<td>Left Maxillary Sinus</td>
<td>CC 32.38mm(±5.33)</td>
<td>31.14mm(±6.00)</td>
<td>1.20</td>
<td>98</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>TR 24.12mm(±5.81)</td>
<td>23.69mm(±5.50)</td>
<td>0.43</td>
<td>111</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>AP 36.84mm(±4.31)</td>
<td>36.43mm(±4.64)</td>
<td>0.46</td>
<td>117</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>VOL 15.08cm³(±6.66)</td>
<td>16.06cm³(±17.96)</td>
<td>-0.38</td>
<td>59</td>
<td>0.71</td>
</tr>
</tbody>
</table>

CC = Cranio-caudal, TR = Transverse, AP = Antero-posterior, VOL= Volume.

Source: Radiology Department of the Usmanu Danfodiyo University Teaching Hospital, Sokoto, 2007-2012

<p>| Table 2: Mean and Standard Deviation of the Right and Left Maxillary Sinus Volumes in Relation to Age Groups |</p>
<table>
<thead>
<tr>
<th>Age Groups (Years)</th>
<th>Range of Volume (cm³)</th>
<th>Mean Volume (cm³)±SD</th>
<th>Range of Volume (cm³)</th>
<th>Mean Volume (cm³)±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–59</td>
<td>5.71 – 29.04</td>
<td>13.34 (±5.40)</td>
<td>4.16 – 23.93</td>
<td>14.17 (±5.87)</td>
</tr>
<tr>
<td>60–69</td>
<td>7.01 – 24.10</td>
<td>14.44 (±5.01)</td>
<td>7.26 – 33.65</td>
<td>14.51 (±6.57)</td>
</tr>
<tr>
<td>70–79</td>
<td>4.71 – 38.57</td>
<td>14.94 (±9.17)</td>
<td>5.00 – 35.66</td>
<td>15.67 (±8.17)</td>
</tr>
<tr>
<td>80–89</td>
<td>12.53 – 14.50</td>
<td>13.51 (±1.39)</td>
<td>8.04 – 11.18</td>
<td>9.61 (±2.22)</td>
</tr>
<tr>
<td>Overall</td>
<td>4.71 – 38.57</td>
<td>14.30 (±6.03)</td>
<td>4.16 – 35.66</td>
<td>14.54 (±6.26)</td>
</tr>
</tbody>
</table>

Source: Radiology Department of the Usmanu Danfodiyo University Teaching Hospital, Sokoto, 2007-2012
Figure 1: The Relationship Between the Mean Volumes of Both Maxillary Sinuses and the Age Groups. Source: Radiology Department of the Usmanu Danfodiyo University Teaching Hospital, Sokoto, 2007-2012

Figure 2: Coronal CT of a 30 year Old Female Showing Measurements of the Craniocaudal (Height) Diameter CC. The Right CC was 32.20mm while the Left CC was 36.15mm. R= Right side, L= Left side, CN= Cranial end, CD= Caudal end. Source: Radiology Department, Usmanu Danfodiyo University Teaching Hospital, Sokoto, 2007-2012

Figure 3: Axial CT of a 45 year of Male Showing Measurement of the Anteroposterior (Depth) Diameter (AP). The Right and Left AP Diameters were 39.81mm and 39.74mm respectively. The Arrows Point towards Septa on the Anterolateral Sinus Wall. R= Right side, L= Left side. Source: Radiology Department of the Usmanu Danfodiyo University Teaching Hospital, Sokoto, 2007-2012
Figure 4: Axial CT of a 27-year-old female showing measurements of the transverse diameter (TR). The right TR is 13.40mm, while TR on the left is 14.72mm. R= Right side, L= Left side, A= Anterior, P= Posterior.

Source: Radiology Department of the Usmanu Danfodiyo University Teaching Hospital, Sokoto, 2007-2012

REFERENCES

